The dynamic organic p-n junction.

نویسندگان

  • Piotr Matyba
  • Klara Maturova
  • Martijn Kemerink
  • Nathaniel D Robinson
  • Ludvig Edman
چکیده

Static p-n junctions in inorganic semiconductors are exploited in a wide range of today's electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymer PN Junction by low Energy Double Implantation Technique

721 Abstract— Polymer base organic PN junction with various ion types was studied. Low-energy ion implantation technique(~keV) is very useful in physical doping on PPP(Polyparaphenylene) polymer. By double implantation, effective organic PN junction was achieved. The best obtained electrical I-V property was rectification ratio which was about 10000. However, still have problems in low junction...

متن کامل

Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells.

An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transfo...

متن کامل

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

Articles you may be interested in Single carbon nanotube photovoltaic device Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction Appl. Large-signal and high-frequency analysis of nonuniformly doped or shaped pn-junction diodes Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes Appl.

متن کامل

Organic reprogrammable circuits based on electrochemically formed diodes.

We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2009